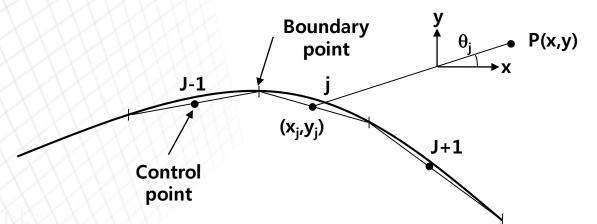
< 4.10 The Vortex Panel Method >


- * Thin airfoil theory
 - Closed form
 - Limited to thin airfoil, $\frac{t_{\text{max}}}{c} \le 12\%$
- * Panel method

_2017

- Vortex panel
- Source panel → non-lifting cases
- * Exactly same idea of thin airfoil theory, but no closed form γ(s)
 → solve numerically

- 1 -

< 4.10 The Vortex Panel Method >

* The velocity potential at P due to j-th panel

$$\begin{split} & \Delta \phi_i = -\frac{1}{2\pi} \int_j \theta_{pj} \gamma_j ds_j \\ & \theta_{pj} = \tan^{-1} \frac{y - y_j}{x - x_j} \end{split} \Rightarrow \phi(p) = \sum_{j=1}^n \phi_j = -\sum_{j=1}^n \frac{\gamma_j}{2\pi} \int_j \theta_{pj} ds_j \end{split}$$

- 2 -

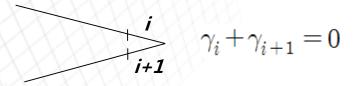
* Let's put point P at the control point of i-th panel

$$\phi(x_i, y_i) = -\sum_{j=1}^n \frac{\gamma_j}{2\pi} \int_j \theta_{ij} ds_j \quad where \ \theta_{ij} = \tan^{-1} \frac{y_i - y_j}{x_i - x_j}$$

< 4.10 The Vortex Panel Method >

- * At the control points, the normal component of velocity is zero.
 - The component of $V_{\scriptscriptstyle \infty}$ normal to i-th panel

 $V_{\infty,n} = V_{\infty} \cos \beta_i$


- The normal component of induced velocity at (x_i, y_i)

$$\begin{split} V_n &= \frac{\partial}{\partial n_i} [\phi(x_i, y_i)] \\ &= -\sum_{j=1}^n \frac{\gamma_j}{2\pi} \int_j \frac{\partial \theta_{ij}}{\partial n_i} ds_j \end{split}$$

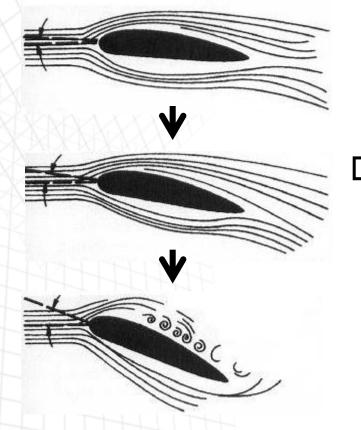
→
$$V_{\infty,n} + V_n = 0$$
 → $V_{\infty} \cos \beta_i - \sum_{n=1}^{\infty} \frac{\gamma_j}{2\pi} \underbrace{\int_j \frac{\partial \theta_{ij}}{dn} ds_j}_{= J_{ij}} = 0$
= J_{ij} : f (panel geometry)

< 4.10 The Vortex Panel Method >

* Boundary condition : $V_{\infty} \cos \beta_i - \sum_{n=1}^{\infty} \frac{\gamma_j}{2\pi} \int \frac{\partial \theta_{ij}}{dn} ds_j = 0$ + Kutta condition :

* Now, we have (n+1) eq. with n unknowns \rightarrow ignore one of control points

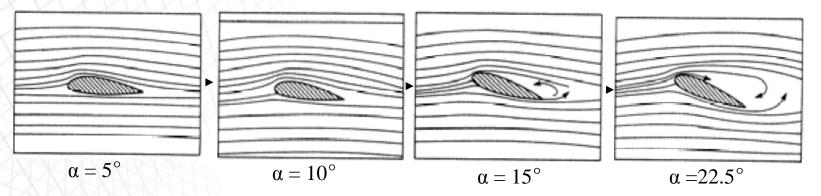
- 4 -


* The flow velocity tangent to the surface = γ

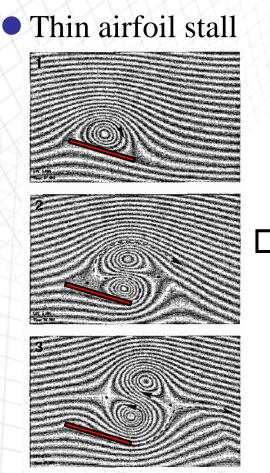
 $\underbrace{u_{i,1}}_{u_{i,2}} \qquad \qquad u_{i,2} = 0 \quad \leftarrow \text{ Inside the solid surface} \\ \Rightarrow \gamma_i = u_{i1} - u_{i2} = u_{i1}$ * Total circulation : $\Gamma = \sum_{i=1}^{n} \gamma_j s_j$ * Lift : $L = \rho_{\infty} V_{\infty} \sum_{j=1}^{n} \gamma_j s_j$ **Aerodynamics 2017 fall**

< 4.12 The Flow over an Airfoil – the Real Case > Stall

- 5 -

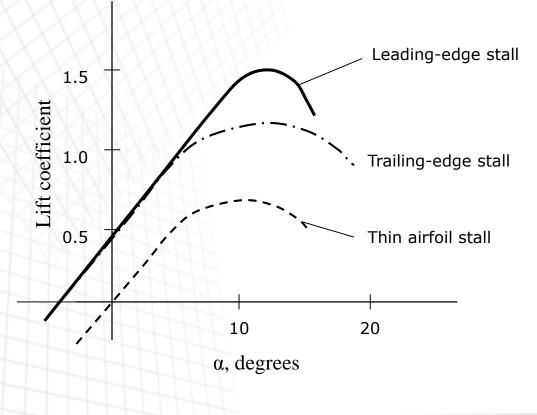

• Leading-edge stall

Flow separation takes place over the entire top surface of the airfoil after <u>occurring</u> <u>at the leading edge</u>

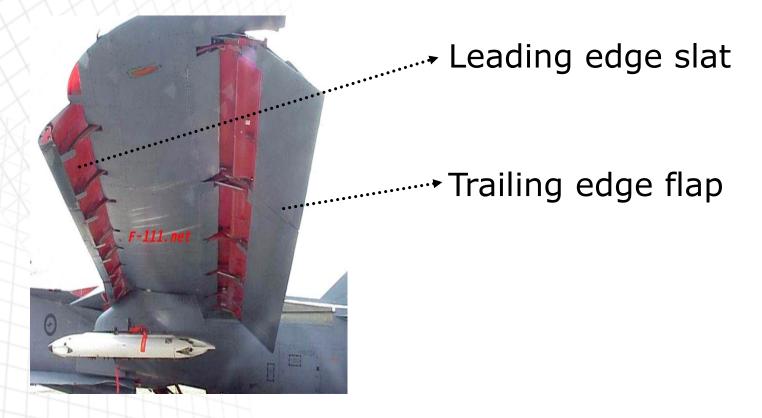

< 4.12 The Flow over an Airfoil – the Real Case > Stall

Trailing-edge stall

Flow separation takes place from <u>the trailing edge</u> at thicker airfoils than leading-edge stall

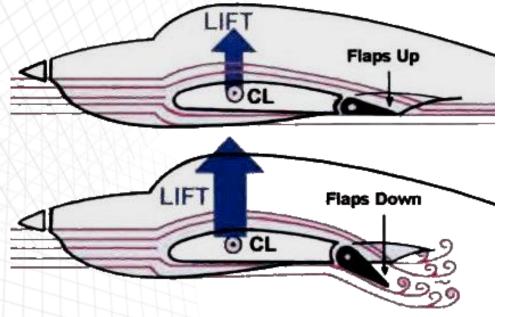


Leading-edge stall


Flow separation takes place over the entire surface of the airfoil after <u>occurring at</u> <u>the leading edge</u>

< 4.12 The Flow over an Airfoil – the Real Case > Stall

Lift-coefficient curves




• Trailing-edge flap (plain type)

More camber \rightarrow Higher lift

< 4.12 The Flow over an Airfoil – the Real Case > ***** High-lift devices

• Effect of slats and flaps

